
Parameter-Passing Mechanisms

There are three commonly used mechanisms for linking the
parameters of a procedure to arguments:

• call-by-value. The arguments are evaluated in the caller's
environment and their values are bound to the parameters
of the function.

• call-by-reference. Here the arguments must be variables.
Their addresses are bound to the parameters of the
procedure.

• call-by-name. Here the arguments are not evaluated in the
caller's environment. The text of the arguments is passed to
the procedure and replaces the parameters in the procedure
body.

Here is an example that shows the difference between call-by-value
and call-by-reference.

(let ([x 0])
(let ([f (lambda (y) (set! y 34))])

(begin
(f x)
x)))

With call-by-value f is called with argument 0; f changes the value of
its parameter y from 0 to 34, but this has nothing to do with
variable x. The overall expression returns 0.

With call-by-reference f is called with the address of variable x, so
the set! actually changes x. This expression returns 34.

Here is an example that shows the difference between call-by-
value and call-by-name.

(let ([x 0])
(let ([f (lambda (y)

(begin
(set! x (+ x 1))
y))])

(f (+ x 5))))
With call-by-value f is called with argument 5; it sets x to 1 but then
returns its argument 5.

With call-by-name the text of the function body becomes
(begin (set! x (+ x 1))

(+ x 5))
and this evaluates to 6.

Each of these mechanisms has its advantages. call-by-value is the
easiest to understand, and is the most commonly used
mechanism. It is used by Scheme, Java, C, and Python.

Call-by-reference allows a procedure to change its argument, and
this can be a useful thing.

Call-by-name has the advantage of delaying the evaluation of an
argument until it is used. Sometimes a function uses one of its
arguments very rarely, but the evaluation of the argument is
expensive in terms of time or memory. Call-by-name is useful in
such a situation.

Implementing each of these mechanisms is easy.

Your MiniScheme interpreter implements call-by-value.

To change it to call-by-reference we do 2 things. First, when
evaluating the arguments in the caller's environment, we get the
boxes the arguments are bound to (remember, the arguments
must be variables). We don't unbox them. Second, when
extending the function's environment in order to evaluate its body,
we don't box the argument values; we just bind the argument
boxes to the parameters.

To change MiniScheme to using call-by-name, we
don't evaluate the arguments at all. In (apply-
proc p args) we rebuild the tree for the body of p
by substituting each argument for the
corresponding parameter, then we evaluate this
tree in the procedure's environment.

